a2 United States Patent

Konovalov et al.

US009244614B2

US 9,244,614 B2
Jan. 26, 2016

(10) Patent No.:
(45) Date of Patent:

(54)

(735)

(73)

")

@

(22)

(86)

87

(65)

(1)

(52)

(58)

MEMORY COALESCING
COMPUTER-IMPLEMENTED METHOD,
SYSTEM, APPARATUS AND
COMPUTER-READABLE MEDIA

Inventors: Alexandr Konovalov, Nizhny Novgorod
(RU); Alexey Kukanov, Nizhny
Novgorod (RU)

INTEL CORPORATION, Santa Clara,
CA (US)

Assignee:

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 280 days.

Appl. No.: 13/996,504

PCT Filed: Apr. 4,2011

PCT No.:

§371 (D),
(2), (4) Date:

PCT/RU2011/000553

Sep. 10, 2013

PCT Pub. No.: 'W02013/022362
PCT Pub. Date: Feb. 14, 2013

Prior Publication Data

US 2015/0347023 Al Dec. 3, 2015

Int. Cl1.

GO6F 12/02 (2006.01)

GO6F 3/06 (2006.01)

U.S. CL

CPC GO6F 3/0608 (2013.01); GO6F 3/0644

(2013.01); GOGF 3/0673 (2013.01)

Field of Classification Search
CPC GOGF 3/0606; GOGF 3/0644; GOGF 3/0673
See application file for complete search history.

ASCERTAIN THAT A FIRST
INTERVAL OF A MEMORY I8

(56) References Cited

U.S. PATENT DOCUMENTS

4,604,694 A 8/1986 Hough
6,175,900 Bl 1/2001 Forin et al.
6,427,195 B1* 7/2002 McGowen GO6F 9/5016
711/153
6,640,290 B1 10/2003 Forin et al.
6,701,420 B1* 3/2004 Hamilton GOG6F 12/023
707/999.202
2005/0066143 Al* 3/2005 Schopp ... GOG6F 12/023
711/170
2006/0190697 Al* 82006 Grant GOG6F 12/023
711/170
(Continued)

FOREIGN PATENT DOCUMENTS

CN 1924829 A 3/2007
OTHER PUBLICATIONS
International Search Report and Written Opinion mailed Apr. 19,
2012 for International Application No. PCT/RU2011/000553, 6
pages.

(Continued)

Primary Examiner — Hiep Nguyen
(74) Attorney, Agent, or Firm — Schwabe, Williamson &
Wyatt, P.C.

(57) ABSTRACT

Embodiments of computer-implemented methods, apparatus
and computer-readable media associated with memory man-
agement are disclosed herein. A computer-implemented
method to coalesce free intervals of a memory may include
ascertaining that a first interval of the memory is free (302,
304). A determination may be made, e.g., from a header
associated with the first interval of the memory, whether a
second interval of the memory, immediately preceding or
following the first interval of the memory, is free (306). After
a determination is made that the second interval of the
memory is free, the first interval of the memory and the
second interval of the memory may be coalesced (310). Other
embodiments may be described and/or claimed.

27 Claims, 4 Drawing Sheets

300

/

MODIFY A HEADER ASSOCIATED)
WITH THE FIRST INTERVAL OF
MEMORY TO INDICATE THAT
THE FIRST INTERVAL OF
MEMORY IS COALESCING

MODIFY THE HEADER
ASSOCIATED WITH THE
FIRST INTERVAL OF THE
MEMORY TO INDICATE

THATIT IS FREE
34

DETERMINE, FROM THE HEADER
ASSOCIATED WITH THE FIRST
INTERVAL OF THE MEMORY,
WHETHER A SECOND INTERVAL OF

PRECEDING THE FIRST INTERVAL
OF THE MEMORY, IS FREE
308

I
I
I
I
I
: THE MEMORY, IMMEDIATELY
I
I
I

: INSERT THE FIRST
! INTERVAL OF THE
1 MEMORY INTO A
1] | coaLesce queue To
1 | TEMPORARILY DELAY
15| COALESCE OF THE
| FIRST AND SEGOND
' INTERVALS OF THE
1 MEMORY

a2

DETERMINE FROM THE HEADER ASSOCIATED WITH THE FIRST INTERVAL
OF THE MEMORY, A SIZE OF THE SECOND INTERVAL OF THE MEMORY
08

3
MODIFY A HEADER ASSOGIATED WITH THE SECOND INTERVAL OF
THE MEMORY TO INDICATE THAT IT IS COALESCING
302

3

COALESCE THE FIRST INTERVAL OF THE MEMORY AND THE SECOND
INTERVAL OF THE MEMORY
[A03

US 9,244,614 B2
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS

2007/0011415 Al* 1/2007 Kaakani GO6F 12/0269
711/159

2007/0011660 Al* 1/2007 Garyali GO6F 12/0269
717/127

2007/0271408 Al 11/2007 Eguchi et al.

2009/0254596 Al* 10/2009 Dussud GO6F 12/0276
707/813

2009/0276602 Al* 11/2009 Chedru GOG6F 12/023
711/171

2010/0331082 Al
2012/0054746 Al*

12/2010 Juetal.
3/2012 Vaghani GO6F 9/5022
718/1

OTHER PUBLICATIONS

P. R. Wilson et. al., “Dynamic Storage Allocation: A Survey and
Critical Review”, Lecture Notes in Computer Science, 986, 1995, 78
pages.

C. S. Ellis et al., “Algorithms for Parallel Memory Allocation”, Inter-
national Journal of Parallel Programming, vol. 17 (4), 1988, 43 pages.
T. Johnson et al., “Space Efficient Parallel Buddy Memory Manage-
ment”, Fourth International Conference on Computing and Informa-
tion, 1992. Proceedings. ICCI *92, S pages.

R. Jones et al., “Garbage Collection: Algorithms for Automatic
Dynamic Memory Management”, John Wiley & Sons, Inc., New
York, NY, 1996, Sections 6.1, 8.1, 12 pages.

D.E. Knuth, “Art of Computer Programming, vol. 1: Fundamental
Algorithms (3rd Ed.), Addison-Wesley Professional; 1997, Section
2.5 “Dynamic Storage Allocation™”, A. Reservation—B. Liberation,
14 pages.

A. Kukanov et al., “The Foundations for Scalable Multi-core Soft-
ware in Intel® Threading Building Blocks”, Intel Technology Jour-
nal. vol. 11, Issue 04, Nov. 2007, 14 pages.

Intel® Threading Building Blocks Reference Manual, Chapter 8
“Memory Allocation”, 10 pages.

J. Reinders, “Scalable Memory Allocation”, Intel Threading Build-
ing Blocks: Outfitting C++ for Multi-core Processor Parallelism.
O’Reilly Media, Inc., 2007, Chapter 6, pp. 101-109.

Google TCMalloc, http://google-perftools.googlecode.com/svn/
trunk/doc/tcmalloc.html, 8 pages .

Emery D. Berger et al., “Hoard: A Scalable Memory Allocator for
Multithreaded Applications”, Proceedings of the ninth international
conference on Architectural support for programming languages and
operating systems, Nov. 2000, p. 117-128.

D. Lea, “A Memory Allocator”, http://g.oswego.edu/dl/html/malloc.
html, 7 pages.

W. Gloger, “Dynamic memory allocator implementations in Linux
system libraries”, http://www.malloc.de/papers/malloc-slides.html,
7 pages.

Extended European Search Report mailed Feb. 24, 2015 for Euro-
pean Patent Application No. 11870564.9, 8 pages.

* cited by examiner

U.S. Patent Jan. 26, 2016 Sheet 1 of 4 US 9,244,614 B2

MY STATE/SIZE |) MY STATE/SIZE |)
18 . 28 18 28
LEFT STATE/ L LEFT STATE/
SIZE 32 16 SIZE 32
|) > 16
MY STATE/SIZE |)
" LEFT%TATE/
SIZE 30 - 12
.) ‘ J
MY STATE/SIZE |) MY STATE/SIZE |)
22 28 22 28
LEFT STATE/ LEFT STATE/]
SIZE 34 > 20 | SIZE 34 > 2
_J J
10 .
Fig. 1 10

LOCKING ROLLBACK 200

IN USE
LOCKED
206

LOCKED

CONFLICT ©

CONSUMED

ALLOCATE

Fig. 2

U.S. Patent Jan. 26, 2016 Sheet 2 of 4 US 9,244,614 B2

300
ASCERTAIN THAT A FIRST
INTERVAL OF A MEMORY IS ‘/
FREE
302
v MODIFY THE HEADER

MODIFY A HEADER ASSOCIATED ASSOCIATED WITH THE
WITH THE FIRST INTERVAL OF FIRST INTERVAL OF THE

MEMORY TO INDICATE THAT MEMORY TO INDICATE
THE FIRST INTERVAL OF THATIT IS FREE
MEMORY 1S COALESCING 314

304 214

INSERT THE FIRST
INTERVAL OF THE
MEMORY INTO A
COALESCE QUEUE TO

DETERMINE, FROM THE HEADER :
|
WHETHER A SECOND INTERVAL OF : O | TEMPORARILY DELAY
zZ
|
I
|
I

ASSOCIATED WITH THE FIRST
INTERVAL OF THE MEMORY,

COALESCE OF THE
FIRST AND SECOND
INTERVALS OF THE
MEMORY

PRECEDING THE FIRST INTERVAL
OF THE MEMORY, IS FREE

I
I
I
|
!
: THE MEMORY, IMMEDIATELY
|
I
|

YES

v

DETERMINE FROM THE HEADER ASSOCIATED WITH THE FIRST INTERVAL
OF THE MEMORY, A SIZE OF THE SECOND INTERVAL OF THE MEMORY

308

v

MODIFY A HEADER ASSOCIATED WITH THE SECOND INTERVAL OF
THE MEMORY TO INDICATE THAT IT IS COALESCING

309
v

COALESCE THE FIRST INTERVAL OF THE MEMORY AND THE SECOND
INTERVAL OF THE MEMORY

310

Fig. 3

U.S. Patent Jan. 26, 2016 Sheet 3 of 4 US 9,244,614 B2

400

DETERMINE, FROM THE HEADER /
ASSOCIATED WITH THE FIRST
INTERVAL OF THE MEMORY,
WHETHER THE SECOND INTERVAL [
OF THE MEMORY IS STILL BEING
COALESCED

402

NO

!

REMOVE THE FIRST INTERVAL OF
MEMORY FROM THE COALESCE
QUEUE
404

MODIFY HEADER
ASSOCIATED WITH
THE FIRST INTERVAL
OF MEMORY TO
INDICATE THAT THE
FIRST INTERVAL OF
MEMORY' IS FREE
408

2D INTERVAL

FREE OR IN USEZ,” N USE

FREE

|

GO TO 308
406

Fig. 4

U.S. Patent Jan. 26, 2016 Sheet 4 of 4 US 9,244,614 B2

500

SYSTEM MEMORY
512 MEMORY
MANAGER.
MODULE

:

| [NVM/STORAGE

. SYSTEM 516
'-PROCEL?QR(S) «—»| CONTROL LOGIC |«—» MEMORY
| 508 MANAGER
MODULE 524

¥
o COMMUNICATIONS
CAMERA(S) INTERFACE(S)

528 520

Fig. 5

US 9,244,614 B2

1
MEMORY COALESCING
COMPUTER-IMPLEMENTED METHOD,
SYSTEM, APPARATUS AND
COMPUTER-READABLE MEDIA

CROSS REFERENCE TO RELATED
APPLICATIONS

The present application is a national phase entry under 35
U.S.C. §371 of International Application No. PCT/RU2011/
000553, filed Aug. 4, 2011, entitled “MEMORY COALESC-
ING COMPUTER-IMPLEMENTED METHOD, SYSTEM,
APPARATUS AND COMPUTER-READABLE MEDIA”,
which designated, among the various States, the United States
of America. The Specification of the PCT/RU2011/000553
Application is hereby incorporated by reference.

FIELD

Embodiments of the present invention relate generally to
the field of computing, and more particularly, to defragmen-
tation of memory of a computing device.

BACKGROUND

The background description provided herein is for the pur-
pose of generally presenting the context of the disclosure.
Work of the presently named inventors, to the extent it is
described in this background section, as well as aspects of the
description that may not otherwise qualify as prior art at the
time of filing, are neither expressly nor impliedly admitted as
prior art against the present disclosure. Unless otherwise indi-
cated herein, the approaches described in this section are not
prior art to the claims in the present disclosure and are not
admitted to be prior art by inclusion in this section.

Computer programs, or applications, often include logic
for dynamic management of memory allocated to the com-
puter programs or applications by the Operating System
(“OS™), also referred to as “run-time memory management.”
Often, computer programs or applications acquire large
blocks of memory from the system memory pool managed by
the OS, then split those blocks into smaller parts, and allocate/
de-allocate them for internal use. Memory no longer needed
may be retained nonetheless for possible reuse by the appli-
cation. Though some memory may be returned to the system
memory pool and the OS during program execution, the
memory allocated to an application is returned in full typi-
cally only on exit of the application.

Various techniques may be used to improve dynamic
memory management by an application. For example, to
reduce memory consumption, memory splitting/coalescing,
rounding of user-required sizes and fragmentation avoidance
may be implemented. For faster performance, low algorith-
mic complexity and locality of references may be important.
For faster performance and scalability in multi-threaded
applications, dynamic memory management by an applica-
tion may include minimizing data sharing and maximizing
concurrency for simultaneous operations. In general, high
performance in multi-threaded memory allocation may be
achieved by using separate per thread or per central process-
ing unit (“CPU”) memory heaps that mostly operate indepen-
dently. However, these independent memory heaps may take
memory from the same address space, which may be shared
among all threads in the application and may also become
fragmented, leading to increased memory consumption.

Various approaches for avoiding memory fragmentation
may noticeably decrease performance of applications with

10

15

20

25

30

35

40

45

50

55

60

65

2

multiple threads actively allocating and de-allocating
dynamic memory. For example, some of these approaches
may require that no other memory management operation
may be executed at the same time.

BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments will be readily understood by the following
detailed description in conjunction with the accompanying
drawings. To facilitate this description, like reference numer-
als designate like structural elements. Embodiments are illus-
trated by way of example and not by way of limitation in the
figures of the accompanying drawings.

FIG. 1 schematically illustrates an example of memory
intervals being coalesced, according to embodiments of the
disclosure.

FIG. 2 schematically depicts example states and transitions
of memory intervals, according to embodiments of the dis-
closure.

FIGS. 3 and 4 schematically depict example methods,
according to embodiments of the disclosure.

FIG. 5 schematically depicts an example system config-
ured to implement dynamic memory management, in accor-
dance with embodiments of the disclosure.

DETAILED DESCRIPTION

In various embodiments, a non-transitory computer-read-
able medium may be provided, having computer-readable
and executable code embodied therein. The code may include
instructions configured to enable an application operated by
an apparatus, in response to execution of the instructions to
ascertain whether a first interval of a memory is free. Addi-
tionally, the instructions may enable an application to modify
a state of the first interval of the memory to indicate that the
first interval of the memory is in a coalescing state. The
instructions may determine whether a second interval of the
memory, immediately preceding or immediately following
the first interval of the memory, is free. After a determination
that the second interval of the memory is free, the instructions
may enable the application to modify a state of the second
interval of the memory to indicate that the second interval of
the memory is in a coalescing state. The instructions may then
enable the application to coalesce the first interval of the
memory and the second interval of the memory.

In some embodiments, the non-transitory computer-read-
able medium may further include instructions configured to
enable the application, in response to execution of the instruc-
tions, to determine, from a header associated with the first
interval of the memory, whether the second interval of the
memory is free, in use, or in a coalescing state. In some
embodiments, the application may be enabled to determine,
from the header associated with the first interval of the
memory, a size of the second interval of the memory. In some
embodiments, the application may be enabled to lock the first
interval of the memory and the second interval of the memory
to prevent modification by application threads other than an
application thread that invoked the memory manager. Insome
embodiments, the application may be enabled to determine
whether the second interval of the memory is free, determine
the size of the second interval of the memory, modify the state
of the second interval of the memory to indicate that it is in
coalescing, and lock the second interval of the memory in an
atomic operation. In some embodiments, the atomic opera-
tion may be a compare-and-swap operation.

In some embodiments, the application may be enabled to,
after a determination that the second interval of the memory is

US 9,244,614 B2

3

in a coalescing state, insert an identification of the first inter-
val of the memory into a coalesce queue to temporarily delay
coalesce of the first and second intervals of the memory. In
some embodiments, the application may further be enabled to
remove the first interval of the memory from the coalesce
queue on a determination that the second interval of the
memory has transitioned from an in coalescing state to free, to
enable the coalesce operation to coalesce the first and second
intervals of the memory to proceed. In some embodiments,
the application may be enabled to modify a state of the first
interval of the memory to indicate that the first interval of the
memory is free after a determination that the second interval
of the memory is in use.

In various embodiments, a non-transitory computer-read-
able medium having computer-readable and executable code
embodied therein may be provided. The code may include
instructions configured to enable an application operated by
an apparatus, in response to execution of the instructions to
ascertain that a first interval of a memory is free. The appli-
cation may also be enabled to determine, from a header asso-
ciated with the first interval of the memory, whether a second
interval of the memory, immediately preceding the first inter-
val of the memory, is free or is currently being coalesced with
a third interval of the memory, after ascertaining that the first
interval of the memory is free. The application may further be
enabled to coalesce the first interval of the memory and the
second interval of the memory where the second interval of
the memory is free. The application may further be enabled to
insert an identification of the first interval of the memory into
a coalesce queue where the second interval of the memory is
currently being coalesced with the third interval of the
memory to temporarily delay coalesce of the first and second
intervals of the memory.

In various embodiments, a non-transitory computer-read-
able medium having computer-readable and executable code
embodied therein may be provided. The code may include
instructions configured to enable an application operated by
an apparatus, in response to execution of the instructions to
ascertain that a first interval of a memory is free. The appli-
cation may also be enabled to determine whether a second
interval of the memory, immediately preceding or following
the first interval of the memory, is free or is currently being
coalesced with athird interval of the memory. The application
may also be enabled to coalesce the first interval of the
memory and the second interval of the memory, if the second
interval of the memory is determined to be free, or insert an
identification of the first interval of the memory into a coa-
lesce queue, if the second interval of the memory is deter-
mined to be currently being coalesced with the third interval
of the memory, to temporarily delay coalesce of the first and
second intervals of the memory.

In various embodiments, a method having a number of the
above described operations may be practiced. In various
embodiments, an apparatus may be configured to practice
such a method. In the following detailed description, refer-
ence is made to the accompanying drawings which form a
part hereof wherein like numerals designate like parts
throughout, and in which is shown by way of illustration
embodiments that may be practiced. It is to be understood that
other embodiments may be utilized and structural or logical
changes may be made without departing from the scope of the
present disclosure. Therefore, the following detailed descrip-
tion is not to be taken in a limiting sense, and the scope of
embodiments is defined by the appended claims and their
equivalents.

Various operations may be described as multiple discrete
actions or operations in turn, in a manner that is most helpful

10

15

20

25

30

35

40

45

50

55

60

65

4

in understanding the claimed subject matter. However, the
order of description should not be construed as to imply that
these operations are necessarily order dependent. In particu-
lar, these operations may not be performed in the order of
presentation. Operations described may be performed in a
different order than the described embodiment. Various addi-
tional operations may be performed and/or described opera-
tions may be omitted in additional embodiments.

For the purposes of the present disclosure, the phrase “A
and/or B” means (A), (B), or (A and B). For the purposes of
the present disclosure, the phrase “A, B, and/or C” means (A),
(B), (C), (A and B), (A and C), (B and C), or (A, B and C).

The description may use the phrases “in an embodiment,”
or “in embodiments,” which may each refer to one or more of
the same or different embodiments. Furthermore, the terms
“comprising,” “including,” “having,” and the like, as used
with respect to embodiments of the present disclosure, are
Synonymous.

As used herein, the term “module” may refer to, be part of,
or include an Application Specific Integrated Circuit
(“ASIC”), an electronic circuit, a processor (shared, dedi-
cated, or group) and/or memory (shared, dedicated, or group)
that execute one or more software or firmware programs, a
combinational logic circuit, a computer program, and/or
other suitable components that provide the described func-
tionality. Referring now to FIG. 1, wherein an example of
memory intervals being coalesced, according to embodi-
ments of the disclosure, is shown. As illustrated, a memory 10
may include a first interval of memory 12 having an associ-
ated header 14. Immediately preceding first interval of
memory 12 may be a second interval of memory 16, also
having an associated header 18. Immediately following first
interval of memory 12 may be a third interval of memory 20,
likewise having an associated header 22.

A header may include various information about an asso-
ciated interval of memory, such as its state and/or size. For
example, header 14 associated with first memory interval 12
may include information 24 about the state and/or size of first
interval of memory 12. As will be discussed below, in some
embodiments the state may also be indicative of whether an
interval of memory is locked. In other embodiments, a sepa-
rate locking field (not shown) may be used to indicate whether
the interval of memory is locked. Like header 14 associated
with first interval of memory 12, header 18 associated with
second interval of memory 16 may include information 26
about the interval’s state and/or size, and header 22 associated
with third interval of memory 20 may include information 28
about the interval’s state and/or size. In various embodiments,
the states of an interval of memory may include a free state, an
in-use/locked state, and/or a coalescing/locked state.

An interval of memory may be coalesced with an immedi-
ately following interval of memory, otherwise known as a
“right neighbor,” in various manners. For example, in FIG. 1,
the size of first interval of memory 12 may be added to its
location (e.g., using pointer arithmetic) to determine the loca-
tion of third interval of memory 20. Header 22 of third inter-
val of memory 20 may then be examined to determine its state
(e.g., free, coalescing or in use) and size. If third interval of
memory 20 is free, the two intervals may be coalesced (com-
bined) into a single interval of memory and a single associ-
ated header.

An interval of memory may also be coalesced with an
immediately preceding interval of memory, otherwise known
as its “left neighbor.” However, this may be slightly more
complex as the location of the left neighbor may not be
readily apparent or computable without its size. Furthermore,
coalescing with a left neighbor may complicate coalescing

US 9,244,614 B2

5

with a right neighbor, because of a possibility of conflicting
coalescing requests for the same interval of memory.

Accordingly, in addition to information about itself, in
some embodiments, each interval of memory may include, in
an associated header, information about an immediately pre-
ceding interval of memory. For example, in FIG. 1, first
interval of memory 12 may include, in its associated header
14, information 30 about second interval of memory 16, such
as the size and/or the state of second interval of memory 16.
With the size of second interval of memory 16 known, the
starting location of second interval of memory may be calcu-
lated by, e.g., subtracting the size from a starting address of
first interval of memory 12. Similarly, second interval of
memory 16 may include, inassociated header 18, information
32 about the size and/or state of its left neighbor (not shown),
and third interval of memory 20 may include, in associated
header 22, information 34 about the size and/or state of the
first interval of memory 12.

To avoid conflicting modifications of information associ-
ated with intervals of the memory, particularly for a multi-
threaded application, exclusive access, also known as “lock-
ing,” may be used by individual threads of the application. In
various embodiments, an interval of memory may be locked
in a way that does not prevent or block execution of operation
with other intervals of memory. For example, a first interval of
memory and a second interval of memory may be locked
independently, without preventing or blocking operations
with other intervals of memory being performed by other
threads of a multi-threaded application.

If an interval of memory is being used by an application or
is coalescing with another interval of memory, it may be
locked. In some embodiments, both a first interval of memory
and a second interval of memory that are to be coalesced may
be locked to prevent modification by application threads other
than an invoking application thread. As will be discussed
below, in some embodiments, information about memory
intervals (e.g., 24-34) may also indicate whether the interval
of memory is locked, whereas in other embodiments, a sepa-
rate locking field (not shown) may be used. In some embodi-
ments, locking an interval of memory may require moditying
information associated with both the interval of memory and
a neighboring interval of memory. For example, locking
memory interval 12 may require modifying both information
24 (or a separate locking field) in its associated header 14 and
information 34 (or a separate locking field) in the header 22 of
its right neighbor. If, after a modification is made to a header
of'one interval of memory, it is determined that information in
a header of its neighbor indicates a conflicting concurrent
modification, locking of the memory interval may be can-
celled. Ifa modification was made in the first header, it may be
reverted.

In various embodiments, when neighboring intervals of
memory are determined to be free, they may be coalesced into
a single interval of memory. For example, in FIG. 1, first
interval of memory 12 may be determined to be free, either
from examining information 24 in its header 14, or implicitly,
such as when the interval of memory is released by an appli-
cation. In some embodiments, the first interval of memory 12
may then be locked, e.g., by updating its state information 24
and/or by updating a separate lock field (not shown), for
potential coalescing with a neighboring interval of memory.

Once an interval of memory is determined to be free, its
neighbors may be checked to determine whether coalescing is
possible. For example, once first interval of memory 12 is
determined to be free, information 30 about second interval of
memory 16 may be examined to determine whether second
interval of memory 16 is free, as well as its size. In some

10

15

20

25

30

35

40

45

50

55

60

6

embodiments, the second interval of memory 16 may be
locked at this time, either by updating its state information 26
oraseparate lock field (not shown). Assuming second interval
of'memory 16 is free, the first and second intervals of memory
may be coalesced into a single interval of memory, as shown
on the right side of FIG. 1. After first interval of memory 12
and second interval of memory are coalesced, information 26
about second interval of memory 16 may be updated to reflect
the new larger size of second interval of memory 16. Addi-
tionally, in some embodiments, information 34 in header 22
of third interval of memory 20 may be updated to reflect its
new left neighbor.

An interval of memory 12 alternatively may be coalesced
with its right neighbor in a similar manner. For example,
assume that second interval of memory 16 is released by an
application, rather than first interval of memory 12. It then
may be determined whether first interval of memory 12 is
free. In some embodiments this may be done by examining
information 24 in header 14 of first interval of memory 12
(which as described above may be located using pointer arith-
metic). If first interval of memory 20 is free, then second
interval of memory 16 and first interval of memory 12 may be
coalesced.

In some embodiments, information (e.g., 24-34) contained
in headers about states and/or sizes of intervals of memory
may be stored in multi-purpose or combined size-and-state
fields. This may allow for both the state and size of an interval
of memory to be determined in a single memory read opera-
tion. For example, a read operation may be performed using,
asinput, any of 24-34, and may yield both the size and state of
an interval of memory. In some embodiments, if a multi-
purpose field contains a value below a first threshold, the
memory interval may be determined to be in a first state.
Values between the first threshold and a second threshold may
indicate that the memory interval is in a second state, and
values above the second threshold may indicate that the
memory interval is in a third state. The size of the memory
interval may be determined using arithmetic and/or bitwise
operations on the values in the multi-purpose fields. Addi-
tionally, if one or both thresholds correspond to a minimum
and/or maximum allowed memory interval size, no additional
computation may be necessary to determine the size of the
memory interval. Alternatively, intervals of memory may be
configured to be sizes that are multiples of a predetermined
power of two. In such cases, lower bits of a multi-purpose
field may be unused by any valid size value, and may be used
to store a state value.

In some embodiments, the multi-purpose size-and-state
field may also be used for locking of intervals of memory.
This may facilitate reading the state and size of an interval of
memory and locking the interval in a single atomic operation.
For example, in some embodiments a compare-and-swap
operation may be performed using, as input, any of 24-34, and
may modify the field to indicate that the interval of memory is
locked while also yielding the interval’s size and state prior to
the operation. In some embodiments, an interval of memory
may be considered locked when in some states and unlocked
when in other states. For example, in some embodiments, if
an interval of memory is in a free state, it may be determined
to be unlocked, while for all other states (e.g., in use or
coalescing) the interval of memory may be determined to be
locked.

FIG. 2 depicts the states and state transitions 200 of inter-
vals of memory, in accordance with various embodiments. An
interval of memory may be in a FREE state 202 if it is not
currently being used by its owner application or being coa-
lesced with another interval of memory. From state 202, if the

US 9,244,614 B2

7

interval of memory is allocated for use by the application,
then its state may transition to an IN USE/LOCKED state
206. If an interval of memory is selected to be coalesced, then
it may transition from the FREE state 202 to a COALESC-
ING/LOCKED state 204 to ensure that the interval of
memory is not allocated or otherwise modified during coa-
lescing.

While transitioning an interval of memory from the FREE
state 202 to the IN USE/LOCKED state 206, it may be deter-
mined that the interval of memory is being concurrently tran-
sitioned to IN USE/LOCKED state 206 or to the COALESC-
ING/LOCKED state 204 by another thread or CPU. In such
case, the associated header information, that may have
already been modified to reflect the transition, may be
reverted to the FREE state 202 (also referred to as “locking
rollback™), to avoid the conflict with the concurrently per-
formed transition.

From the COALESCING/LOCKED state 204, if the inter-
val of memory is coalesced with its left neighbor, the interval
may be said to have been “consumed,” after which it may no
longer exist as an independent interval of memory with its
own header. An example of this is seen in FIG. 1, wherein first
interval of memory 12 is consumed by second interval of
memory 16, so that first interval of memory 12 no longer
exists as an independent interval of memory with a header. If,
instead of being consumed by its left neighbor, the interval of
memory consumes its right neighbor, then after coalescing
the interval of memory may transition back to the FREE state
202. For example, in FIG. 1, after first interval of memory 12
is consumed by second interval of memory 16, second inter-
val of memory may transition from the COALESCING/
LOCKED state 204 to the FREE state 202.

From state 204, it also may be determined that an interval
of'memory’s left or right neighbor is in the IN USE/LOCKED
state 206. In such case, the interval of memory may be
returned to the FREE state 202. However, from state 204, if it
is determined that the neighbor interval is also in the COA-
LESCING/LOCKED state 204, or the neighbor interval is
being transitioned to state 204 or to state 206 by another
memory management thread, then the interval of memory
may transition to the IN USE/LOCKED state 206 and an
identification of the interval of memory be inserted into a
coalesce queue (not shown) until its neighbor is free to coa-
lesce. For example, even if an interval of memory’s own
information about its left neighbor indicates that the left
neighbor is in the FREE state 202, the left neighbor may be in
the process of being acquired by another memory manage-
ment thread. This may be determined from the left neighbor’s
own header being in the COALESCING/LOCKED state 204.
While in the IN USE/LOCKED state 206, the interval of
memory may be utilized by the owner application and inac-
cessible for other usage, or it may be in the coalesce queue.
From the IN USE/LOCKED state 206, an interval of memory
may transition to the COALESCING/LOCKED state 204
(e.g., “released” for coalescing) when it is de-allocated by the
owner application or when it is released from the coalesce
queue because its neighbor is no longer in the COALESC-
ING/LOCKED state 204.

An example method 300 of coalescing intervals of
memory, in accordance with various embodiments, is
depicted in FIG. 3. At block 302, an application may ascertain
that a first interval of memory is free. For example, an appli-
cation may de-allocate a first interval of memory, in which
case it may be ascertained that the first interval of memory is
free. In some embodiments, intervals of memory may be
periodically examined by the dynamic memory management
logic of an application to determine whether they are free.

20

35

40

45

50

55

60

65

8

At block 304, a header associated with the first interval of
memory may be modified to indicate that the first interval of
memory is coalescing. For example, header 14 of first interval
of'memory 12, and more particularly, information 24 about its
state, may be modified to indicate that the first interval of
memory 12 is in the COALESCING/LOCKED state 204. In
some embodiments, a header of a right neighbor also may be
modified to indicate that the first interval of memory is in the
COALESCING/LOCKED state 204.

At block 305, it may be determined whether a second,
neighboring interval of memory is free. For example, at block
306, it may be determined, from the header associated with
the first interval of the memory, whether the second interval of
the memory immediately preceding the first interval of the
memory (left neighbor) is free. For example, information 30
in header 14 associated with first interval of memory 12 may
be examined to determine if second interval of memory 16 is
at the FREE state 202. Although not shown, it may alterna-
tively be determined whether another interval of memory
immediately following the first interval of memory (right
neighbor) is free. If, at block 305, it is determined that the
second interval of memory is free, then, in some embodi-
ments, a size of the second interval of memory may be deter-
mined from the header associated with the first interval of
memory, at block 308. In some embodiments, blocks 305-308
may be performed in a single memory read operation. At
block 309, information associated with the second interval of
memory may be modified to indicate that the second interval
of memory is in coalescing. For example, information 30
about the state of the left neighbor interval 16 in the header 14
of'the first interval of memory 12, as well as information 26 in
the header 18, may be modified to indicate that the interval 16
is in the COALESCING/LOCKED state 204. In some
embodiments, an atomic operation (e.g., compare and swap)
may be used to perform blocks 305-309, e.g., by reading and
updating its combined size-and-state field.

At block 310, the first interval of the memory and second
interval of the memory may be coalesced into a single, larger
interval of memory. For example, first interval of memory 12
in FIG. 1 was coalesced with (and consumed by) second
interval of memory 16.

However, it may be determined at block 305 that the second
interval of memory is not free. In that case, if the second
interval of memory is coalescing (e.g., at state 204) with
another interval of memory, then an identification of the first
interval of memory may be inserted into a coalesce queue at
block 312. This may temporarily delay coalescing of the first
and second intervals of memory until the second interval of
memory is available.

While in the coalesce queue, the first interval of memory
may be set to the IN USE/LOCKED state 206. In some
embodiments, the coalesce queue may be a linked list, though
other data structures may be used. In some embodiments, the
queue may be a first-in-first-out (“FIFO”) queue, though
other ordering techniques may be used. In some embodi-
ments, the queue may be non-blocking. For example, use of
the queue in this manner may ensure that concurrently run-
ning operations may progress towards insertion or removal of
an identification of an interval of memory to/from the queue
even if one or more of these operations are temporarily
stopped.

If the second interval of memory is not coalescing (e.g.,
state 204) but is instead in use (e.g., state 206), then at block
314 the header associated with the first interval of memory
may be modified to indicate that it is free (e.g., state 202).

Method 300 as described above is not meant to be limiting.
The various actions may be performed in various orders not

US 9,244,614 B2

9

shown. Moreover, one or more actions may be omitted and/or
added. For example, an interval of memory may be coalesced
with its right neighbor before or after it is coalesced with its
left neighbor.

FIG. 4 depicts an example method 400 for processing a
coalesce queue, in accordance with various embodiments. As
illustrated, at block 402, it may be determined, e.g., by an
application from the header associated with the first interval
of'the memory, whether the second interval of the memory is
still being coalesced with the third interval of the memory. For
example, upon passage of a predetermined amount of time
after its identification has been inserted into the coalescing
queue, the header of the first interval of the memory may be
reexamined to determine whether the second interval of
memory is still coalescing. If so, then the method may pro-
ceed back to block 402 upon passage of another predeter-
mined time interval.

Ifnot, then the first interval of the memory may be removed
from the coalesce queue at block 404. Ifthe second interval of
memory transitioned to being free, then at block 406, the
method may proceed back to block 308 of FIG. 3, so that the
first and second intervals of memory may be coalesced. If,
however, the second interval of memory transitioned to being
in use (e.g., it was allocated to another thread of a multi-
threaded application), then the first interval of memory may
simply be returned to the free state at block 408, as the second
interval of memory may not be available for some time.

In some embodiments, whenever a new interval of memory
is needed, the dynamic memory management logic may first
attempt to obtain memory from the coalescing queue by
rechecking intervals of memory contained therein and coa-
lescing if possible. In some embodiments, the dynamic
memory management logic only seeks out other free memory
if all intervals of memory in the coalescing queue are deter-
mined to still be coalescing.

The techniques and apparatuses described herein may be
implemented into a system or apparatus using suitable hard-
ware and/or software to configure as desired. Further, while
embodiments of the disclosure has been described thus far as
dynamic memory management of an application, embodi-
ments of the present disclosures, or aspects thereof, may be
practice by an operating system, a virtual machine manager,
or other memory management entities.

FIG. 5 illustrates, for various embodiments, an example
system 500 comprising one or more processor(s) or processor
cores 504, system control logic 508 coupled to at least one of
the processor(s) or processor cores 504, system memory 512
coupled to system control logic 508, non-volatile memory
(NVM)/storage 516 coupled to system control logic 508, and
one or more communications interface(s) 520 coupled to
system control logic 508.

System control logic 508 for one embodiment may include
any suitable interface controllers to provide for any suitable
interface to at least one of the processor(s) 504 and/or to any
suitable device or component in communication with system
control logic 508.

System control logic 508 for one embodiment may include
one or more memory controller(s) to provide an interface to
system memory 512. System memory 512 may be used to
load and store data and/or instructions, for example, for sys-
tem 500. System memory 512 for one embodiment may
include any suitable volatile memory, such as suitable
dynamic random access memory (DRAM), for example.

System control logic 508 for one embodiment may include
one or more input/output (I/O) controller(s) to provide an
interface to NVM/storage 516 and communications inter-
face(s) 520.

10

15

20

25

30

35

40

45

50

55

60

65

10

NVM/storage 516 may be used to store data and/or instruc-
tions, for example. NVM/storage 516 may include any suit-
able non-volatile memory, such as flash memory, for
example, and/or may include any suitable non-volatile stor-
age device(s), such as one or more hard disk drive(s)
(HDD(s)), one or more solid-state drive(s), one or more com-
pact disc (CD) drive(s), and/or one or more digital versatile
disc (DVD) drive(s) for example.

The NVM/storage 516 may include a storage resource
physically part of a device on which the system 500 is
installed or it may be accessible by, but not necessarily a part
of, the device. For example, the NVM/storage 516 may be
accessed over a network via the communications interface(s)
520.

Communications interface(s) 520 may provide an interface
for system 500 to communicate over a communication chan-
nel 526 with one or more, network(s) 528 and/or with any
other suitable device. Communications interface(s) 520 may
include any suitable hardware and/or firmware. Communica-
tions interface(s) 520 for one embodiment may include, for
example, a wireless network adapter. The communications
interface(s) 520 may use one or more antennac(s).

System memory 512 and NVM/storage 516 may include
temporal and persistent copies of a virtual machine manager,
an operating system or an application having a memory man-
ager module 524, respectively. The memory manager module
524 may include instructions that when executed by at least
one of the processor(s) or processor core(s) 504 results in the
operating system or application performing the earlier
described memory management methods/operations. In
some embodiments, the memory manager module 524 may
additionally/alternatively be located in the system control
logic 508.

For some embodiments, at least one of the processor(s) or
processor core(s) 504 may be packaged together with logic
for one or more controller(s) of system control logic 508. For
some embodiments, at least one of the processor(s) or pro-
cessor core(s) 504 may be packaged together with logic for
one or more controllers of system control logic 508 to form a
System in Package (SiP). For some embodiments, at least one
of'the processor(s) or processor core(s) 504 may be integrated
on the same die with logic for one or more controller(s) of
system control logic 508. For some embodiments, at least one
of'the processor(s) or processor core(s) 504 may be integrated
on the same die with logic for one or more controller(s) of
system control logic 508 to form a System on Chip (SoC).

The system 500 may be a desktop, laptop or a tablet com-
puter, a mobile telephone, a smart phone, a set-top box, a
game console, or any other device having memory. In various
embodiments, system 500 may have more or less compo-
nents, and/or different architectures. For example, in various
embodiments, the system 500 may include one or more cam-
eras 528.

Although certain embodiments have been illustrated and
described herein for purposes of description, a wide variety of
alternate and/or equivalent embodiments or implementations
calculated to achieve the same purposes may be substituted
for the embodiments shown and described without departing
from the scope of the present disclosure. This application is
intended to cover any adaptations or variations of the embodi-
ments discussed herein. Therefore, it is manifestly intended
that embodiments described herein be limited only by the
claims and the equivalents thereof.

US 9,244,614 B2

11

What is claimed is:

1. An apparatus, comprising:

a processor;

a memory coupled to the processor; and

a memory manager configured to be operated by the pro-

cessor to:

ascertain that a first interval of the memory is free;

modify a state of the first interval of the memory to
indicate that the first interval of the memory is in a
coalescing state;

determine whether a second interval of the memory,
immediately preceding or immediately following the
first interval of the memory, is free;

after a determination that the second interval of the
memory is free, modify a state of the second interval
of the memory to indicate that the second interval of
the memory is in a coalescing state; and

coalesce the first interval of the memory and the second
interval of the memory.

2. The apparatus of claim 1, wherein the memory manager
is further configured to determine, from a header associated
with the first interval of the memory, whether the second
interval of the memory is free, in use, or in a coalescing state.

3. The apparatus of claim 2, wherein the memory manager
is further configured to determine, from the header associated
with the first interval of the memory, a size of the second
interval of the memory.

4. The apparatus of claim 3, wherein the memory manager
is further configured to lock the first interval of the memory
and the second interval of the memory to prevent modification
by application threads other than an application thread that
invoked the memory manager.

5. The apparatus of claim 4, wherein the memory manager
is further configured to independently lock the first interval of
the memory and the second interval of the memory, without
preventing or blocking execution of operations with other
intervals of the memory performed by concurrent invocations
of the memory manager by other threads of a multi-threaded
application.

6. The apparatus of claim 4, wherein the memory manager
is further configured to determine whether the second interval
of'the memory is free, determine the size of the second inter-
val of the memory, modify the state of the second interval of
the memory to indicate that it is in coalescing, and lock the
second interval of the memory in an atomic operation.

7. The apparatus of claim 6, wherein the atomic operation
is a compare-and-swap operation.

8. The apparatus of claim 2, wherein the memory manager
is further configured to:

after a determination that the second interval of the

memory is in a coalescing state, insert an identification
of'the first interval of the memory into a coalesce queue
to temporarily delay coalesce of the first and second
intervals of the memory; and

after a determination that the second interval of the

memory is no longer in a coalescing state, remove the
first interval of the memory from the coalesce queue and,
where the second interval of the memory has transi-
tioned from the in coalescing state to being free, enable
a coalesce operation to coalesce the first and second
intervals of the memory to proceed.

9. The apparatus of claim 1, wherein the memory manager
is further configured to modify a state of the first interval of
the memory to indicate that the first interval of the memory is
free after a determination that the second interval of the
memory is in use.

10

25

30

40

45

50

55

12
10. A computer-implemented method comprising:

ascertaining, by memory manager operated by a processor,
that a first interval of a memory is free;

determining, by the memory manager, from a header asso-
ciated with the first interval of the memory, whether a
second interval of the memory, immediately preceding
the first interval of the memory, is free or is currently
being coalesced with a third interval of the memory, after
ascertaining that the first interval of the memory is free;

coalescing, by the memory manager, the first interval of the
memory and the second interval of the memory where
the second interval of the memory is free; and

inserting, by the memory manager, an identification of the
first interval of the memory into a coalesce queue where
the second interval of the memory is currently being
coalesced with the third interval of the memory to tem-
porarily delay coalesce of the first and second intervals
of the memory.

11. The computer-implemented method of claim 10, fur-
ther comprising determining, by the memory manager, from
the header associated with the first interval of the memory, a
size of the second interval of the memory.

12. The computer-implemented method of claim 11, fur-
ther comprising determining, by the memory manager,
whether the second interval of the memory is free and the size
of the second interval of the memory, as well as locking the
second interval of memory, in an atomic operation.

13. The computer-implemented method of claim 12,
wherein the atomic operation is a compare-and-swap opera-
tion.

14. The computer-implemented method of claim 10, fur-
ther comprising modifying, by the memory manager, the
header associated with the first interval of the memory to
indicate that the first interval of the memory is locked.

15. The computer-implemented method of claim 14, fur-
ther comprising determining, by the memory manager, from
the header associated with the first interval of the memory,
whether the second interval of the memory is in use by an
application.

16. The computer-implemented method of claim 15, fur-
ther comprising modifying, by the memory manager, the
header associated with the first interval of the memory to
indicate that the first interval of the memory is free after a
determination that the second interval of the memory is in use
by the application.

17. The computer-implemented method of claim 10, fur-
ther comprising:

after an insertion of the identification first interval of the
memory into a coalesce queue, determining, by the
memory manager, from the header associated with the
first interval of the memory, whether the second interval
of the memory is still being coalesced with the third
interval of the memory; and

removing, by the memory manager, the first interval of the
memory from the coalesce queue on a determination that
the second and third intervals of the memory have been
coalesced to enable the coalesce operation to coalesce
the first and second intervals of the memory to proceed.

18. A system, comprising:
a processor;
a memory coupled to the processor;

a camera coupled to the processor;

US 9,244,614 B2

13

a memory manager configured to be operated by the pro-

cessor to:

ascertain that a first interval of the memory is free;

determine, from a header associated with the first inter-
val of the memory, whether a second interval of the
memory, immediately preceding the first interval of
the memory, is free; and

coalesce the first interval of the memory and the second
interval of the memory after a determination that the
second interval of the memory is free.

19. The system of claim 18, further comprising at least one
antenna, wherein the system is a mobile telephone.

20. The system of claim 18, further comprising a second
camera coupled to the processor, wherein the system is a
tablet computer.

21. A non-transitory computer-readable medium having
computer-readable and executable code embodied therein,
the code including instructions configured to cause an appa-
ratus, in response to execution of the instructions, to:

ascertain that a first interval of a memory of the apparatus

is free;

determine whether a second interval of the memory, imme-

diately preceding or following the first interval of the
memory, is free or is currently being coalesced with a
third interval of the memory; and

coalesce the first interval of the memory and the second

interval of the memory, if the second interval of the
memory is determined to be free, or insert an identifica-
tion of the first interval of the memory into a coalesce
queue, if the second interval of the memory is deter-
mined to be currently being coalesced with the third
interval of the memory, to temporarily delay coalesce of
the first and second intervals of the memory.

22. The non-transitory computer-readable medium of
claim 21, further comprising instructions configured to cause
the apparatus, in response to execution of the instructions, to
determine, from the header associated with the first interval of
the memory, a size of the second interval of the memory.

23. The non-transitory computer-readable medium of
claim 21, further comprising instructions configured to cause
the apparatus, in response to execution of the instructions, to
determine whether the second interval of the memory is free

10

15

25

40

14

and determine a size of the second interval of the memory, and
to lock the second interval of memory, all in an atomic opera-
tion.
24. The non-transitory computer-readable medium of
claim 23, wherein the atomic operation is a compare and-
swap operation.
25. The non-transitory computer-readable medium of
claim 21, further comprising instructions configured to cause
the apparatus, in response to execution of the instructions, to
modify the header associated with the first interval of the
memory to indicate that the first interval of the memory is in
use.
26. The non-transitory computer-readable medium of
claim 25, further comprising instructions configured to cause
the apparatus, in response to execution of the instructions, to
modify the header associated with the first interval of the
memory to indicate that the first interval of the memory is free
after a determination that the second interval of the memory is
in use.
27. The non-transitory computer-readable medium of
claim 26, further comprising instructions configured to cause
the apparatus, in response to execution of the instructions, to:
determine, after an insertion of the identification of the first
interval of the memory into the coalesce queue, from the
header associated with the first interval of the memory,
whether the second interval of the memory is still being
coalesced with the third interval of the memory;

remove the identification of the first interval of the memory
from the coalesce queue on a determination that the
second interval of memory is no longer being coalesced;

after the determination that the second interval of memory
is no longer being coalesced, enabling a coalesce opera-
tion to coalesce the first and second intervals of the
memory to proceed where the second interval of the
memory is free; and

after the determination that the second interval of memory

is no longer being coalesced, modifying the header asso-
ciated with the first interval of the memory to indicate
that the first interval of the memory is free where the
second interval of the memory transitioned from being
coalesced to being in use.

#* #* #* #* #*

